

Technology Maturity for Adaptive Massively Parallel Computing

First Workshop 2009

March 2-3, 2009

Portland, OR, USA

Massive Data Computing

Pradeep K. Dubey

Senior Principal Engineer **Intel Corporation**

Norman's Gulf

What is ... Is it ... What if? Large dataset mining Semantic Web/Grid Mining eaming Data Mining **Mining** outed Data Mining Multimodal event/object Recogn orative Eilers Indexing Statistical Computing ensional Indexing Mad Streaming sionality Reduction Cluster vnamic Ontologies Efficient access to large, unstructured, sparse datasets Recognition Stream Processing Neural netwo LE/P/QP/St Synthesis Ray tracing Graphics Physical simulation Audio synthesis **Document synthesis**

Interactive RMS

Recognition
What is ...?

Mining Is it ...? Synthesis
What if ...?

Model

Find an existing model instance

Create a new model instance

Most RMS apps are about enabling interactive (real-time) RMS Loop or iRMS

Visual Computing Loop

Analytics Loop

RMS Inner Loop Unrolled

Visual Computing (Graphics and Vision)

Non-Visual Computing (Search and Analytics)

Visual Computing Meets Analytics

Rendering Simulation

collision detection force solver global illumination

Physics

Dynamics

Machine learning
Neural networks
Probabilistic reasoning

Fuzzy logic Belief networks Evolutionary computing Chaos theory

Soft Computing

Constraints

Soft Physics?

Constraint Dynamics

Nested iRMS

Recognition

What is ...?

Mining Is it ...? Synthesis

What if ...?

Connected Computing

... Architectural implications are far more radical

Computational substrate must undergo a sea-change!

Immersive Computing

Sensory Immersion

Computational requirements are huge, but ...

Limited by input/output limits of human perception

Data changes the game

[Kasparov vs. Deep Blue]

Rule-based system exceeds human performance in a structured, deterministic domain

[Google MT wins NIST contest]

- Statistical inference (not rules)
- 100s of TB of training data
- Racks of computation

Newcomer Google beats decades of rule-based translation research

Opportunities Abound: Massive Data with Massive Compute

Machine Learning Algorithm Classes

- Model-based
 - Transparent model
 - Bayes nets
 - Regression
 - Discriminant Analysis
 - Opaque model
 - Neural networks
 - SVM

- Model-free
 - Supervised Classifiers
 - Decision trees
 - Ensembles of trees
 - Unsupervised
 - Clustering
 - Association Rules
 - Sequential Patterns
 - Principal Components
 - K-Nearest Neighbor

What are we doing?

Generative non-

linear

Render RT/Global

> Pnysic Simulat

Behavic...

Offline/Inte

Data

Visualiz

Visua

Computir

Multi-P

Gan

V II.UZI. V

Compute

Ad-hoc search ... Derivative Pricing Ray-Tracing
Semantic Search Portfolio Selection ... Physical Simulation

Level 2: Mathematical Models

Partitioning Based ... Diffusion Models Level Sets

Quadratic

Optimization " Systems
Level 3: Mathematical Techniques

SVD ... Interior-Point Collision Detection

K-means Stochastic Simulation ... Filtering&Anti -Aliasing ...

Level 4.1: Numerical Algorithms

Direct Solvers Iterative Solvers Monte Carlo Simulation (V-Clip, GJK)

Level 4.2: Numerical Primitives and Data Structures

Sparse BLAS123 Dense BLAS123 Structured matrix operat.

Sparcity struct. (CRS, graphs, elimination tree (triangle, box, convex) Rd-tree, BVH)

c Searc

ed Entity raction

Computer

Vision

Tracking

Partide

&Reconstr.

omatic

cturing

chine

<u>isiation</u> borative

tering

t-Event

timodal

earch

mantic

<u>earch</u>

sonal / Callata

) Bots

Workload-driven Architecture Research

SAAR (Scalable Applications and Architecture Research)

Scaling With Cores

Architectural Smarts

RMS Computing Core: Algorithmic Evolution

- Map-based shading
- SIMPLEX based linear optimization
- Mass-Spring based deformation
- Marker-based explicit surface tracking
- Linear manifold based recognition/modeling
- Linear Complementarity problems
- Low dimension classifiers

Summary

- Connected Computing
 - It's all about three C's (above + content or data)
- Architectural Challenge
 - Moving the data real-time to where compute happens
- Algorithmic Opportunity
 - Massive data approach to traditional compute problems

